Supporting Information

Predicting materials properties with little data using shotgun transfer learning

Hironao Yamada, $^{\dagger,\perp}$ Chang Liu, $^{\dagger,\ddagger,\perp}$ Stephen Wu, $^{\dagger,\P,\perp}$ Yukinori Koyama, ‡ Shenghong Ju, § Junichiro Shiomi, ‡,§ Junko Morikawa, $^{\ddagger,\parallel}$ and Ryo Yoshida $^{*,\dagger,\ddagger,\P,\perp}$

† The Institute of Statistical Mathematics, Research Organization of Information and Systems, Tachikawa, Tokyo 190-8562, Japan

‡National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

¶ The Graduate University for Advanced Studies, Tachikawa, Tokyo 190-8562, Japan

§ The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

 $\parallel Tokyo\ Institute\ of\ Technology,\ Meguro-ku,\ Tokyo\ 152-8550,\ Japan$

 $\perp Contributed$ equally to this work

E-mail: yoshidar@ism.ac.jp

XenonPy is a Python library that implements a comprehensive set of machine learning tools for materials informatics. The current release (v0.3.7: 2019/8/7) is a prototype version, which provides some limited modules. For details, see https://xenonpy.readthedocs.io.

XenonPy has the following features:

- An interface with public materials databases
- A library of materials descriptors (compositional/structural/molecular descriptors)
- The XenonPy.MDL pre-trained model library (v0.1.0b, 2019/7/31: more than 140,000 models with 35 properties of small molecules, polymers, and inorganic compounds, as listed in Table 1 in the main text)
- Machine learning tools
- A transfer learning feature using pre-trained models in XenonPy.MDL

Users can interact with the search API in Python using any given query strings to obtain a specific subset of pre-trained models. Furthermore, XenonPy offers a simple-to-use tool chain for seamless performance of transfer learning using a selected pre-trained model. The full list of currently available models and sample codes (for API querying, transfer learning, and so on) is provided at https://xenonpy.readthedocs.io/en/latest/features.html#xenonpy-mdl-and-transfer-learning. The library is ever-growing. Examples of the prediction performance exhibited by the current best-performing models are shown in Figure S1.

Figure S1: Prediction—observation plots for current best-performing models in XenonPy.MDL. Properties of (a) small molecules, (b) polymers, and (c) inorganic compounds are ordered from left to right.

Table S1: List of fingerprint descriptors in the rcdk and RDKit libraries that were used in building the shotgun model library.

rcdk	length	RDKit	length
standard	1,024	basic fingerprints	2,048
extended	1,024	atom pairs	2,048
graph	1,024	topological torsions	2,048
hybridization	1,024	Morgan fingerprints (without feature-based)	2,048
maccs	166	Morgan fingerprints (with feature-based)	2,048
estate	79		
pubchem	881		
kr	4,860		
circular	1,024		

Figure S2: Chemical structures of the 52 polymers used in the task of predicting C_P . The training polymers were divided into six subgroups as numbered in the figure using the K-means clustering. Expert chemists annotated the identified clusters according to their compositional and structural features as (1) hydrocarbon maintenant polymers, (2) aliphatic esters, (3) phenols ethers, (4) aromatic esters, (5) N containing aromatics, and (6) diphenyl substituted metals. With this grouping, we performed the stratified group 6-fold CV to evaluate the generalization capability of transferred models.